Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A transparent and flexible organic bistable memory device using parylene with embedded gold nanoparticles

Identifieur interne : 001186 ( Main/Repository ); précédent : 001185; suivant : 001187

A transparent and flexible organic bistable memory device using parylene with embedded gold nanoparticles

Auteurs : RBID : Pascal:13-0248880

Descripteurs français

English descriptors

Abstract

In this work, we demonstrate the fabrication of a transparent and flexible memory device in the simple structure of metal/dielectric/metal (MIM). Here, the MIM structure consists of gold electrode/200 nm Parylene-C/ 20 nm gold nanoparticles/100 nm Parylene-C/indium-tin-oxide (ITO) coated polyethylene terephthalate (PET). The use of parylene as the dielectric layer is important to ensure that there is no thermal stress induced on the flexible ITO/ PET substrate compare to other reported works using various organic dielectrics that require high temperature curing. In addition, parylene deposition does not disturb the drop-casted gold nanoparticles. Hence, the use of parylene will be the right step forward in the fabrication of mechanically flexible and optically transparent devices. Current versus voltage (I-V) plot shows the presence of hysteresis suggesting the charge storage capability as a memory device. In the I-V plot, three distinct regions based on the slope have been identified and the transport mechanisms are discussed and explained. The fabricated device shows similar behavior as write-once-read-many memory device and can be programmed with either positive or negative bias voltage. However, the memory device shows unstable current state when being bent under different curvature diameters.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0248880

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A transparent and flexible organic bistable memory device using parylene with embedded gold nanoparticles</title>
<author>
<name sortKey="Aw, K C" uniqKey="Aw K">K. C. Aw</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Mechanical Engineering, The University of Auckland, 20, Symonds Street</s1>
<s2>Auckland 1010</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Auckland 1010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ooi, P C" uniqKey="Ooi P">P. C. Ooi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Mechanical Engineering, The University of Auckland, 20, Symonds Street</s1>
<s2>Auckland 1010</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Auckland 1010</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus</s1>
<s2>Nibong Tebal, 14300 Penang</s2>
<s3>MYS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>Nibong Tebal, 14300 Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Razak, K A" uniqKey="Razak K">K. A. Razak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NanoBiotechnology Research and Innovation, INFORMM. Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gao, W" uniqKey="Gao W">W. Gao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Chemical and Materials Engineering, The University of Auckland, 20, Symonds Street</s1>
<s2>Auckland 1010</s2>
<s3>NZL</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Nouvelle-Zélande</country>
<wicri:noRegion>Auckland 1010</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0248880</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0248880 INIST</idno>
<idno type="RBID">Pascal:13-0248880</idno>
<idno type="wicri:Area/Main/Corpus">000996</idno>
<idno type="wicri:Area/Main/Repository">001186</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4522</idno>
<title level="j" type="abbreviated">J. mater. sci., Mater. electron.</title>
<title level="j" type="main">Journal of materials science. Materials in electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bias voltage</term>
<term>Charge storage</term>
<term>Coated material</term>
<term>Coatings</term>
<term>Curing</term>
<term>Curvature</term>
<term>Doped materials</term>
<term>Ethylene terephthalate polymer</term>
<term>Flexible structure</term>
<term>Flip-flop circuits</term>
<term>Gold</term>
<term>Hardening</term>
<term>High temperature</term>
<term>Hysteresis</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>MIM structure</term>
<term>Memory devices</term>
<term>Nanoparticle</term>
<term>Organic electronics</term>
<term>Organic insulators</term>
<term>Stress effects</term>
<term>Thermal stress</term>
<term>Tin addition</term>
<term>Voltage current curve</term>
<term>Write-once storage</term>
<term>Xylene polymer</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Electronique organique</term>
<term>Circuit bistable</term>
<term>Dispositif à mémoire</term>
<term>Structure MIM</term>
<term>Addition étain</term>
<term>Couche ITO</term>
<term>Revêtement</term>
<term>Contrainte thermique</term>
<term>Effet contrainte</term>
<term>Haute température</term>
<term>Durcissement</term>
<term>Traitement(durcissement)</term>
<term>Caractéristique courant tension</term>
<term>Hystérésis</term>
<term>Stockage charge</term>
<term>Mémoire non effaçable</term>
<term>Tension polarisation</term>
<term>Courbure</term>
<term>Xylène polymère</term>
<term>Or</term>
<term>Nanoparticule</term>
<term>Oxyde d'indium</term>
<term>Matériau revêtu</term>
<term>Ethylène téréphtalate polymère</term>
<term>Structure flexible</term>
<term>Isolant organique</term>
<term>Matériau dopé</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Or</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this work, we demonstrate the fabrication of a transparent and flexible memory device in the simple structure of metal/dielectric/metal (MIM). Here, the MIM structure consists of gold electrode/200 nm Parylene-C/ 20 nm gold nanoparticles/100 nm Parylene-C/indium-tin-oxide (ITO) coated polyethylene terephthalate (PET). The use of parylene as the dielectric layer is important to ensure that there is no thermal stress induced on the flexible ITO/ PET substrate compare to other reported works using various organic dielectrics that require high temperature curing. In addition, parylene deposition does not disturb the drop-casted gold nanoparticles. Hence, the use of parylene will be the right step forward in the fabrication of mechanically flexible and optically transparent devices. Current versus voltage (I-V) plot shows the presence of hysteresis suggesting the charge storage capability as a memory device. In the I-V plot, three distinct regions based on the slope have been identified and the transport mechanisms are discussed and explained. The fabricated device shows similar behavior as write-once-read-many memory device and can be programmed with either positive or negative bias voltage. However, the memory device shows unstable current state when being bent under different curvature diameters.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4522</s0>
</fA01>
<fA03 i2="1">
<s0>J. mater. sci., Mater. electron.</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A transparent and flexible organic bistable memory device using parylene with embedded gold nanoparticles</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AW (K. C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OOI (P. C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAZAK (K. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GAO (W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Mechanical Engineering, The University of Auckland, 20, Symonds Street</s1>
<s2>Auckland 1010</s2>
<s3>NZL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus</s1>
<s2>Nibong Tebal, 14300 Penang</s2>
<s3>MYS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NanoBiotechnology Research and Innovation, INFORMM. Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Chemical and Materials Engineering, The University of Auckland, 20, Symonds Street</s1>
<s2>Auckland 1010</s2>
<s3>NZL</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>3116-3125</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22352</s2>
<s5>354000503652210670</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>45 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0248880</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of materials science. Materials in electronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this work, we demonstrate the fabrication of a transparent and flexible memory device in the simple structure of metal/dielectric/metal (MIM). Here, the MIM structure consists of gold electrode/200 nm Parylene-C/ 20 nm gold nanoparticles/100 nm Parylene-C/indium-tin-oxide (ITO) coated polyethylene terephthalate (PET). The use of parylene as the dielectric layer is important to ensure that there is no thermal stress induced on the flexible ITO/ PET substrate compare to other reported works using various organic dielectrics that require high temperature curing. In addition, parylene deposition does not disturb the drop-casted gold nanoparticles. Hence, the use of parylene will be the right step forward in the fabrication of mechanically flexible and optically transparent devices. Current versus voltage (I-V) plot shows the presence of hysteresis suggesting the charge storage capability as a memory device. In the I-V plot, three distinct regions based on the slope have been identified and the transport mechanisms are discussed and explained. The fabricated device shows similar behavior as write-once-read-many memory device and can be programmed with either positive or negative bias voltage. However, the memory device shows unstable current state when being bent under different curvature diameters.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03G02A6</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03I02</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07W</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Electronique organique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Organic electronics</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Electrónica orgánica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Circuit bistable</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Flip-flop circuits</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dispositif à mémoire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Memory devices</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Structure MIM</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>MIM structure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estructura MIM</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Revêtement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Coatings</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Revestimiento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Contrainte thermique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Thermal stress</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Tensión térmica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet contrainte</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Stress effects</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Durcissement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Hardening</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Endurecimiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Traitement(durcissement)</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Curing</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Hystérésis</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Hysteresis</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Histéresis</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Stockage charge</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Charge storage</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Almacienamiento carga</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Mémoire non effaçable</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Write-once storage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Tension polarisation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Bias voltage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Voltage polarización</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Courbure</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Curvature</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Curvatura</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Xylène polymère</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Xylene polymer</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Xileno polímero</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Or</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Gold</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Oro</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Matériau revêtu</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Coated material</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Material revestido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Ethylène téréphtalate polymère</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Ethylene terephthalate polymer</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Etileno tereftalato polímero</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Structure flexible</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Flexible structure</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Estructura flexible</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Isolant organique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Organic insulators</s0>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Circuit séquentiel</s0>
<s5>19</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Sequential circuit</s0>
<s5>19</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Circuito secuencial</s0>
<s5>19</s5>
</fC07>
<fN21>
<s1>238</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001186 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001186 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0248880
   |texte=   A transparent and flexible organic bistable memory device using parylene with embedded gold nanoparticles
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024